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INTRODUCTION

The long-term goal of our research is to develop computer-aided diagnosis (CAD) techniques for
improving the detection and diagnosis of breast cancer. The hypothesis to be tested in the present ‘
project is that radiologists’ ability to differentiate malignant from benign breast lesions can be improved
by integrating radiologists’ perceptual expertise in the interpretation of mammograms with the
advantages of automated computer classification. This project has 3 objectives:

1. To combine radiologist-extracted Breast Imaging Reporting and Data System (BI-RADS)
features with image features extracted by a computer to classify malignant and benign clustered
microcalcifications in mammograms.

2. To optimally combine radiologists’ diagnosis with the result of computer classification.

3. To optimize computer classification for full-field digital mammograms.

BODY

1.  Analysis of clinical benefits of CAD

We analyzed data obtained in a previous observer study to find potential clinical benefits from
CAD in addition to what has already been demonstrated [1]. In this observer study, 10 radiologists -
reviewed mammograms of 104 patients both without and with a computer aid that was designed to help
them differentiate malignant from benign clustered microcalcifications in mammograms. Previously,
we demonstrated that the computer aid helped the radiologists to improve diagnostic accuracy as
measured By A, (area under a receiver operating characteristic [ROC] curve) [1]. Specifically, the
computer aid helped each of the radiologists, on average, to recommend 14% more biopsies for
malignant lesions and to recommend 10% fewer biopsies for benign lesions. In the present analysis, we
demonstrated that the computer aid helped reduce substantially the variabilities in radiologists'
interpretation of the mammograms. In addition, the computer aid helped radiologists to improve
diagnostic accuracy to a greater extent compared to independent double readings, i.e., the interpretation
of the same mammograms by two different radiologists independently and the subsequent combination

of their diagnoses. Parts of this work were presented at an annual meeting of the American Association




of Physicists in Medicine (AAPM) [2] and a Scientific Assembly and Annual Meeting of Radiological
Society of North America (RSNA) [3]. In addition, a publication has resulted in collaboration with Dr.
Robert Wagner who performed a separate theory-based analysis of our observer-study data to
demonstrate the reduction in variability due to CAD in the interpretation of mammograms (see reprint in
the Appendix) [4].
2. Comparison of BI-RADS lesion descriptors and computer-extracted image features

A study has been ongoing to compare computer classification of breast lesions as malignant or
benign based on BI-RADS lesion descriptors [5, 6] and based on computer-extracted image features that
we have described previously [7, 8]. Our goal in this study was to identify the relative strengths and
weaknesses of the two different computer classification methods and to improve computer classification
by developing new computer image feature-extraction techniques that correspond to, and that can be
used to substitute for, important BI-RADS lesion descriptors. In this study, we included both clustered
microcalcifications and masses, even though we originally proposed to study only clustered
microcalcifications. We have collected a total of 209 cases for this study, 123 of which contain
clustered microcalcifications and 86 contain masses. There are 85 malignant lesions and 124 benign
lesions in this database. All cases include original mammograms in the standard and magnification
views. Currently, we are collecting data on BI-RADS lesion descriptors in an observer study.
3. "Optimal" combination of radiologists' and a computer's diagnostic assessment

We have developed a method for combining quantitative diagnostic assessments made by
radiologists and those‘made by a computer aid. This method was based on a bivariate binormal model
that was also used in ROC analysis. This method takes into account the individual accuracy of the
radiologist and the computer aid, and the correlation between their diagnostic assessments. We applied
this method to data obtained previously from an observer study and found that the results obtained using
this method was better than the results that radiologists achieved by using the computer aid in an ad hoc
way. The average A, value increased from 0.75 to 0.79. The improved A, value was close to the
performance of the computer alone (A, = 0.80). This work was presented at the SPIE [9]. A conference

proceeding is included in the Appendix [10].




4.  CAD in small-field digital mammograms

We conducted avstudy of computer classification of malignant and benign clustered
microcalcifications in small-field digital mammograms. Our goal was to develop CAD for full-ﬁeld
digital mammograms based on our techniques developed previously on digitized screen-film
mammograms. The purpose of this work was to evaluate the feasibility of applying our existing
computer technique to mammograms acquired with a digital detector without extensive modifications.
We analyzed 79 lesions that were biopsied. Of these, 33 lesions were malignant and 46 were benign.
Because each case normally consisted of more than one image, we analyzed a total of 176 images, of
which 56 were of the malignant lesions and 120 were of the benign lesions. The computer analysis
" achieved an A, value of 0.84 for the 176 images and 0.90 for the 79 lesions. In comparison, radiologists
who evaluated these lesions prior to the biopsies achieved an A, value of 0.76 for the 79 lesions. This
study demonsfrated the potential of our computer technique to classify accurately clustered
microcalcifications in mammograms acquired with a digital detector as malignant or benign. This study
was presented at the 5" International Workshop on Digital Mammography [11]. A conference

proceeding is included in the Appendix [12].

KEY RESEARCH ACCOMPLISHMENTS

e Analysis of potential clinical benefits of CAD of malignant and benign breast lesions.

e Work-in-progress on a comparison of BI-RADS lesion descriptors provided by radiologists and
computer-extracted image features for computer classification of breast lesions as malignant or
benign. |

e Development of a novel method for the "optimal” combination of quantitative diagnostic assessments
made by a radiologist and that made by a computer.

o Investigation of computer classification of malignant and benign clustered microcalcifications in

small-field digital mammograms.




REPORTABLE OUTCOMES

1. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Doi K. Multiple benefits of computer-aided
diagnosis (CAD) in the diagnosis of malignant and benign breast lesions. Presented at World .
Congress on Medical Physics and Biomedical Engineering, July, 2000.

2. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Doi K. Three potential benefits of computer-aided
diagnosis (CAD) in breast cancer diagnosis. Chicago, Illinois: the 86th Scientific Assembly and
Annual Meeting of the Radiological Society of North America, 2000. _

3. Beideﬁ SV, Wagner RF, Campbell G, Metz CE, Jiang Y. Components-of-variance models for
random-effects ROC analysis: the case of unequal variance structures across modalities. Acad
Radiol 8:605-615, 2001.

4. Jiang Y, Metz CE. An optimal method for combining two correlated diagnostic assessments with
application to cofnputer-aided diagnosis. Presented at SPIE's International Symposium: Medical
Imaging 2001, February, 2001. |

5. Jiang Y, Metz CE. An optimal method for combining tv\'/o correlated diagnostic assessments with
application to computer-aided diagnosis. Proc. SPIE 4324:177-183, 2001.

6. Jiang Y, Nishikawa RM, Venta LL, Maloney MM, Giger ML. Computer classification of malignant
and benign microcalcifications in small-field digital mammograms. Presented at 5th International
Workshop on Digital Mammography, June, 2000.

7. Jiang Y, Nishikawa RM, Venta LL, Maloney MM, Giger ML. Computer classifica_tion of malignant
and benign microcalcifications in small-field digital mammograms. In: IWDM 2000 5th
International Workshop on Digital Mammography (Yaffe MJ eds.). Medison, WI: Medical Physics
Publishing, pp. 237-242, 2000.

CONCLUSIONS

We have made progress toward all 3 objectives of this project. The research results are positive

and support the continuation of this project.
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Components-of-Variance Models for
Random-Effects ROC Analysis:

The Case of Unequal Variance Structures Across Modalities'

Sergey V. Beiden, PhD, Robert F. Wagner, PhD, Gregory Campbell, PhD, Charles E. Metz, PhD, Yulei Jiang, PhD

Rationale and Objectives. Several of the authors have previously published an analysis of multiple sources of uncertainty
in the recciver operating characteristic (ROC) assessment and compatison of diagnostic modalities. The analysis assumed

that the components of variance were the same for the modali
to obtain a gencralization that does not require that assumption.

ties under comparison. The purpose of the present work is

Materials and Mcthods. The generalization is achieved by splitting three of the six components of vaniance in the previ-
ous model into modality-dependent contributions. Two distinct formulations of this approach can be cbtained from alter-
native choices of the three components to be split; however, a one-to-one relationship exists between the magnitudes of

the components estimated from these two formulations.

Results. The method is applied to a study of multiple readers, with and without the aid of a computer-assist modality,
performing the task of discriminating between benign and malignant clusters of microcalcifications. Analysis according to
the first method of splitting shaws large decreases in the reader and reader-by-case components of variance when the
computer assist is used by the readers. Analysis in terms of the alternative splitting shows large decreases in the corre-

sponding modality-interaction components.

Conclusion. A solution to the problem of multivariate ROC analysis without the assumption of equal variance structure

across modalities has been provided. Allernative formulations
A surprising result is that estimates of confidence intervals an

lead to consistent results selated by a onc-to-onc mapping.
d numbers of cases and readers required for a specified con-

fidence interval remain the same in the more general model ay in the restricted model.
Key Words. Receiver operating characteristic (ROC); components-of-variance; jackknife; bootstrap.
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The field of random-effects receiver operating characteris-
tic (ROC) analysis has made important advances during
the past decade. Its major applications include the assess-
ment of modalities for diagnostic imaging and computer-
assisted diagnosis (CAD) and the comparison of compet-
ing diagnostic modalities. A particularly important para-
digm is the multiple-reader, multiple-case (MRMC)
approach in which every reader reads every patient case.
This is the so-called reader study that allows for a proper
accounting of both reader and case vartance and thus pro-
vides estimates of uncertainties of ROC parameters that
are said to be “gencralizable to a population of readers as
well as to a population of cases.” This paradigm was first
modeled by Swets and Pickett in 1982 (1). Dorfman, Ber-
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baum, and Metz (DBM) later provided a more flexible
{heoretical and also more practical solution to the MRMC
problem (2). Their use of a general linear model together
with “jackknife” resampling allowed the application of
standard analysis-of-variance (ANOVA) techniques. Their
approach and scveral altematives were discussed at a
1993 symposium, and the proceedings were published in
a supplement to this journal (3).

Beiden, Wagner, and Campbell (BWC) have recently
provided a review of some of the issues in random-effects
ROC analysis, together with an aliemative solution to the
MRMC problem (4). The BWC analysis includes not only
the estimation of uncertainties in performancc cstimates in
the MRMC paradigm but also a method to uniquely de-
compose these uncertainties into contributions in a com-
ponents-of-variance model (2,4,5). These components are
referred to as the “variance structure” of the problem and
include the case variability, the reader variability, various
interactions among cases, readers, and modalities and,
finally, experimental replication error. The BWC alterna-
tive to previous solutions involves the analysis of a set of
population experiments in terms of the model compo-
nents. In any realistic clinical context, such population
experiments arc not possible. The practical solution is to
replace the set of population experiments with the set of
corresponding bootstrap resampling experiments on the
available finite data set. This leads to a system of lincar
equations that may be solved for estimates of the compo-
nents of variance (ie, the sources of randomness). In turn,
one then obtains estimates of (he confidence intervals of
interest, as wcll as the ability to size a pivotal study from
a pilot study.

In the previous work, we followed the model and as-
sumption of DBM, namely, that the reader and case vari-
ances and their interaction for one modality are so similar
1o those for the other modality that they can be assumed
to be equal. A central goal of CAD and other evolutions
in imaging technology, however, is to create new modali-
ties that will outperform older ones—in ways that include
reducing the magpitude of these components of variance.
A comparison of the performance of such new and older
technologies will therefore require a more general model.

In the present article, we extend our previous work to
the more general case of unequal variance structures
across two modalities under comparison. We will show
how to solve fo: estimates of the variance structure for
this more general MRMC paradigm. In the next section,
we present one formulation of a solution to this estima-
tion problem. An alternative formulation is presented in
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#004/013

‘l{" ) ;lAgadem'ic} Fiadio|oéy1 Vol 8, No 7, July 2001

the Appendix. Our analysis is applied to the study of
Jiang et al (6), in which unaided readers of suspicious
mammographic clusters of calcifications were compared
with readers who used a CAD modality as an adjunct. In
a companion article (7), we analyze the uncertaintics in
the estimates of the variance structure.

Following DBM (2), we analyze the MRMC paradigm
within the framework of a general mmltivariate linear
mode! for ROC parameter estimates. We will use the
ROC area pacameter, A, (dropping the z for simplicity), to
exemplify the model; the model is nevertheless applicable
to any other ROC model parameter or accuracy index.
For completeness, we repeat the multivariate linear model
for an ROC accuracy index, 4, used by DBM:

TERIALS AND METHODS

Aum=‘1'+rj+ Ck+ (mr)u

+ (o) + (rO) + (Mrchy + Zijens (D

where i indicates a particular imaging modality, j denotes
a particular image reader, k is a particular case sample,
and # is a particular replication of the experiment. (The
index for case sample, K, is jncluded in this model be-
cause DBM studied jackknife pseudo-values.) The term
represents the contribution of modality i to the expected
value of the accuracy index, while the remaining terms
are independent zero-mean random variables. The tcrms
with a single index are the reader and case contributions
to the variability, with variances o and o2, respectively.
The terms with two subscripts represent the (wo-way in-
teractions between modality and reader, modality and
case, and reader and case, with variances o2, o%. and
a2, respectively. The term with three subscripts repre-
sents the three-way interaction among modality, reader,
and case, with variance o%,.. The last term is a pure error
term in experimental reproducibility, with variance o,
For the case where multiple-reader experiments are corn-
ducicd but readers do not independently repeat their read-
ings, the last two terms, with variances a2, and a2, are
inseparable, and we combine them into a single term with
variance o2

A major distinction in applications of this model is
that between random and fixed factors, A random factor
is one that—on replication of the experimenl—is drawn
independently from a specified population; a fixed factor
is one that remains unchanged on replication. As written
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in Equation (1), modalities are considered fixed factors,
while readers and cases are random factors. Finally, we
note that it will not be necessary for the present article to
invoke assumptions of normality.

The model of Equation (1) assumes that the variance
structure is homogeneous across modalities. Qur present
interest, however, is the case in which this structure
changes across modalitics. A parsimonious model for this
case and the application where readers do not indepen-
dently repeat their readings can be obtained by making
the reader, case, and reader-by-case interaction terms a
function of modality (i), respectively, ri(#), ci), (rc)u(d).
It can be written as

Ay = i+ (D) + ei} + (mr)y

+ (mc)y + (reduld) + e )]
The two-way intcraction terms involving modality m
and readers r (or cases ¢) carry information related to the
reader (or case) correlation across modalities; they do not

require generalization. (All else being equal, the interac-
tion strength is higher when the correlation is lower, and
vice versa.) However, for the case where readers indepen-
dently repeat their readings, the three-way interaction
term also would not be made a function of modality, but
the final term in Equation (1} would be. An alternative
formulation, described in the Appendix, generalizes Equa-
tion (1) in u different way.

The variances produced by any linear model, such as
Equation (2), and that contribute to ohservations over re-
peated experiments depend on which factors are held
fixed and which are sampled randomly from a population
when a particular ROC experiment is repeated. In refer-
ence 4 we showed that, for the equal-variance model con-
sidered there, it is possible to perform six population ex-
periments, chosen from the family of 32 considered by
Roe and Metz (5), that would allow one to solve far the
six variance components in Equation (1), combining the
final two components as just described. In the present
work, we extend this approach to solve for nine compo-
nents in the new model, using nine equations.

We use the notation of Roe and Metz (5), where vari-
ables to the left of the vertical bar in the subscript of an
accuracy index are random factors, while those to the
right are fixed factors. For example, suppose we consider
replications of the experiment where readers R as well as
cases C are drawn randomly from the population but the
modality M is a fixed factor. All six variance components

for a given modality contribute to the observed variance
in this experiment. This is stated by the following expres-
sion, which, for the case of two modalities, provides two
equations:

VN(AACW) = 03(M) + Ug(M) + of,,,

+ 05, + L) + 0% 3
When readers are also a fixed effect, the pure reader term
and the modality-by-reader term do not contribute. That
experiment and observed variance are given by

var(Agug) = 03 (M) + 05 + oL (M) + o, 1G]

which also provides two equations when two modalities
are being studied. ‘

An experiment that is generally of most interest is the
one in which two fixed modalities, M and M’, are com-
pared in terms of the ROC performance estimates ob-
tained from randomly drawn reader and case samples.
The population variance that is observed in that experi-
ment can be calculated after subtracting two equations of
the form of Equation (2) above:

Ay — A = [ — l-lq} + ["1(1) - r}(z)]
+ [ei(1) — (2] + [r cul1) — "Cjk(z)]
+ [mry; = mry] + [mey, — mey]

+ [ejkll - jk|z]- ()
The first term in square brackets on the right-hand side is
not a mndom variable, and 50 it contributes no variance.
The variance of the next term in squarc brackets involves
the correlation of r;(1) and r,(2). In the present model, we
take these components to be different in magnitude but
perfectly correlated, that is, r(1) = Y71(2), where vy, is a
constant. (We treat the pure case and reader-by-case com-
ponents similarly.) Thus,

var[r(1) — r(2)] = [0,(1) ~ o, (T (6)
This approach is consistent with the interpretation that the
reader component was originally not a function of modal-
ity for the equal-variance mode] of Equation (1) and thus
could be thought of as perfectly correlated across modali-
ties in this special case to which the present model degen-
erates. More generally, of course, the reader variation
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may not be perfectly correlated across modalities. How-
ever, the flexibility to include arbitrary correlations of
readers (or cases) across modalities is achieved in the
general linear model as used here through the presence of
the interaction terms. (For split-plot designs, however,
where the readers [or cases] are drawn independently for
the two modalitics [8], the prescnt model would be modi-
fied to set the reader [or case] correlation across modality
to zero.)

By similar steps, the variance of the complete differ-
ence expressed by Equation (5) can then be written as

var{Agcys = Arciur) = 20, + O + 02)
+ (o(M) = 0,(M"))?
+ (oM) — o M)
+ (0, (M) — o, (M. (D

One similarly obtains the following results for the other
experiments that are required in order to solve for all of
the variance components in this model:

var(Acjru — Acerss) = 207 (M) + 7%), @

var! (Acum - Aqxu') = Z(O?M +03)
+ (0. (M) — a.(M"))?
+ (0. (M) — o, (M), (9

var(Aciow — Acirmr) = 05(M) + 07 (M")
+ 2(0:2)1: + 0%)
+ (o-c(ﬂl) - ac(M,))z' (10)

Notice that Equations (3), (4), and (8) each describe two
independent experiments (M = 1 or 2). The system of
nine equations represented by Equations (3), (4), and (7)-
(10) then expresses nine observable variances as a multi-
variate quadratic equation in the square roots of nine vari-
ance components, These equations reduce to the linear
expressions in our previous work (4) for the case where
the variances are equal across modalities.

The Ieft-hand sides of Equations (3), (4), and (7)-(10)
are observables that are independent of any model. Thus,
we may equate the right-hand sides just derived for the
present model with the corresponding right-hand sides
that follow from the model for the equal-variance case
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given in BWC (4). When necessary to distinguish be-
tween models, we shall use the presubscript 4 to refer to
components in the BWC model of reference 4 and the
presubscript B to refer to components in the model de-
scribed up to this point in the present article. (Compo-
nents of variance in the alternative formulation described
in the Appendix wilt be denoted by a presubscript C.
Otherwise in this article, the components will refer to the
present model, model B.) For example, equating Equation
(8) as written above to the corresponding version of this
for the equal-variance case yields

[30'3:(1) + ,,a%t(2)]/2 + 503 = Aolzc + Aole- 11)

The average on the lefi-hand side of this equation results
from the fact that in BWC (4) the observable quantity
was faken to be the average over the fixed effect M, and
thus we average over the two equations implied by Equa-
tion (8).

By repeating this exercise with Equations (4) and (3),
and taking differences with Equation (11), two additional
expressions parallel to Equation (11) can be found: one in
which all versions of o2 replace the corresponding ver-
sions of o%, and all versions of o, replace the corre-
sponding versions of o2, and another in which all ver-
sions of o? replace the comresponding versions of o%. and
all versions of o2, replace the corresponding versions of
o?. The complete parallcl of these cxpressions with Equa-
tion {11) becomes apparent on recalling that 6% includes
Oonee

Auother set of relationships can be found by first per-
forming a similar excrcisc on Equations (10) and (4). The
difference of the two results yields

407 = 0 (1)0(2). (12)

Similar results foltow for the components o? and o2.
These expressions will be useful as a check on the results
below.

We now proceed as in our previous analysis (4) where,
in practice, we replace a given population experiment
with the corresponding bootstrap experiment. (Details of
the statistical bootstrap are reviewed in reference 4, based
on Efren [9] and Efron and Tibshirani [10].)

The nonlinear system, Equations (3), (4), and (7)-(10),
can be solved for the unknown variance components by
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Companents of Variance in Equal- and Unequal-Variance
Models (All Values x 1074

Unequal Variance

Variance Equal
Component Varianca Modality 1 Madality 2

[ 731 7.68 6.98

r 7.78 17.84 3.39

c 2,11 10.92 0.41
mc 4.43 442 Lot
mr 7.72 4.48 e
mrcle 14.00 10.45

*Hllipses Indicate no new pararneter; these components do not
split In the new molel.

numerical iteration. We first write the variance compo-
nents as a vector @, whose transposc, 7, is

(0)" = (a(1), 0(2), a (1)}, o(2),

UMC’ o’llll” GTC(I)’ o-rc(z)’ UG)' (13)
Each of the nine equations is then rearranged such that
the vector ¢ is on the left-hand side of the system; the
right-hand side is then the remaining nonlinear operation
on @, which we call f. The system can then be written as

a = f(0). (14
We use a method of simple iteration to solve this system,
with the initial estimate being taken to he the solution of
the linear system that results when the two structures are
cqual. This system of quadratic equations can be shown
to have only one physically meaningful solution set, and
thus the problem is well defined.

RESULTS [l /i /)

Application to CAD

We use the study of CAD by Jiang ct al (6) to exem-
plify this approach. These authors compared the perfor-
mance of 10 radiologists—unaided versus with the aid of
a computer-assist modality—reading mammograms from
104 patients with clustered microcalcifications. The truth
state for these patients was established with biopsy (46
malignant, 58 benign cases). ROC analysis for individual
readers and also their average performance within the
MRMC paradigm and model of DBM were published in
reference 6. Here we use the methods described above to
solve for the components of variance in these MRMC

|14 | 'UNEQUAL VARIANCE STRUGTURES IN ROC ANALYSIS
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experiments, both in terms of the previous model that
assumes equal variance structure across modalities and in
terms of the new mode] that does not make that assump-
tion.

Components of Variance

In the Table, we present the components of variance
according to our present analysis within the two models:
the first model assuming equal variances across modalities
and the second mode! assuming unequal variances. Here,
the first modality (modality 1) refers to the combination
of mammographic images and unaided readers; the sec-
ond modality (modality 2) refers to the combination of
mammographic images and readers aided by the comput-
erized featnre extraction, fusion, and rating of probability
of cancer described in reference 6.

The following observations can be made from the Ta-
ble. In the equal-variance model, the reader component of
variance and the case component of variance have similar
strengths. The patient component of variance, which can
be interpreted as the range of case difficulty as repre-
sented by the finitc sample, hardly changed when we
went to the unequal-variance treatment. The reader com-
ponent of variance, which can be interpreted as a range of
reader ability, “splits” into two quite unequal components
in the unequal-variance model. Without the assist of
CAD, the reader component is now seen to he much
greater than the case component; the addition of CAD is
seen to reduce this component morc than fivefold. The
reader-by-case component also splits into two quite un-
equal components, with a more than 25-fold reduction
after the addition of CAD. Larger values of this compo-
nent imply that the range of sampled case difficulty dc-
pends on the particular reader (or by the symmetry of that
component, that the range of reader skills depends on the
case); smaller values imply less such dependence. Thus,
we take this splitting to indicate that the addition of CAD
in the study of reference 6 almost eliminated the depen-
dence of the range of case difficulty on the particular
reader in that study (or, symmetrically, that it almost
eliminated the dependence of the range of reader skills on
the case).

For later reference (companion article, reference 7)
these results are shown graphically in Figure 1, to-
gether with error bars on the model results that repre-
sent = 1 standard deviation. In the companion article
(7), we provide the analysis of uncertainty in these re-
sults. In a few words, the error bars are obtained by
using a resampling technique known as the jackknife-

609
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Figure 1. (a) Variznce components ¢ (case}, r (reader), and rc {reader-by-case) in the present analysis of the study in reference 6.
Vertical bars represent mean estimates, = 1 standard deviation estimated with the method of refererce 7. Unsplit components (to
the left in each set of three) are estimated with the model of reference 4 (denoted medel A). Splitting components (the pair to the
right in each set) are estimated with madel B of the present analysis (ie, not assuming equal variance structure across modalities).
{b) Variance components mc {modality-by-case), mr (modality-by-reader), and « {residual error) in the present analysis of the study
in reference 6. These three components shift rather than split in going from model A of previous work to mode! B of the present -
article.

after-bootstrap (10), followed by lincar propagation of tem, po2(1), po%(2). The relationship is found from Equa-

variance for the model of equal variance structure or tions (11) and (12):
its modification for the model of unequal variance
structure. [s02(1) + pa2(DY2 = 1(1)s0.2)
We note also that the model components in the un- '
split model are indeed the geometric mean of the _ = [36,.(1) — 50, (T2
model components in the split model, consistent with
p P! = 0 — po. (15)

the theoretical analysis of the modcl. Thus far, these
observations are for the splitting components of the

model. We now turn to the components that are not

split in the new model.

In the new model, the reader-by-modality interaction
changed to accommodate the new values of reader
variance. There was litile change in the case-by-modal-
ity interaction, as cxpected from the small change in
the case component. Finally, the last component, or
effective error term, is reduced when going to the new
model, (The effective error term includes the contribu-
tion to the variance due to reader inconsistency that
was called “jitter” in reference 11 and subsequent par-

That is, the shift in the nonsplitting component is the dif-
ference of the geometric mean and the arithmetic mean of
the splitting components. Two additional expressions ex-
actly parallel to Equation (15) can be found: one in which
o, replaccs o, everywhere on the left-hand side and o2,
replaces o2 on the right-hand side of Equation (15), and
anothier in which o, replaces g, everywhere on the left-
hand side and o2, replaces o2 on the right-hand side of
Equation (15). (Recall again that o? contains Ore-)

lance.)

The shifts in the unsplit modcl terms that accompany Inference and Experimental Design
the move to the more elaborate model can be accounted An important consequence of the model and analysis
for by simple algebraic relationships. The change in the above is that the present approach does not change the
effective error term just noted, that is, the difference be- confidence intervals on the difference of ROC parameters
tween the solution to the linear system, 402, and the cor- betwsen compceting modalitics, compared with our previ-
responding solution to the quadratic system, o, is sim- ous work (4). These confidence intervals are found from
ply related to the change in going from the solution to the the single-bootstrap experiment represented by the left-
linear system, 40%, to the solutions to the quadratic sys- hand side of Equation (7). The right-hand side of this

610
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equation is new in the present model, and thus the inter-
pretation is new. The input to the equation represented by
the left-hand side has not changed, however.

The new model also does not change the design of a
pivotal study from results of a pilot study that was de-
scribed in our previous analysis (4). In that analysis, the
variance componznts me, mr, and € were the only contrib-
utors to the estimation of the numbers of cases and read-
ers required for a specified confidence interval on the dif-
ference of ROC parameters between competing modalities,
but in the present analysis there are nine contributions to
that estimation task (right-hand side of Equation [7]). Al-
though the former three terms may be reduced in the new
model, inspection of Equation (15) and its analogucs
shows that this reduction is exactly offset by the remain-
ing terms of Equation (7). Thus, the design of experi-
ments according to the previous model and model param-
eters obtained in reference 4 is unchanged, if only the
difference in performance between two modalities is of
interest. However, the partitioning of the variances ob-
tained in the present work provides additional insight for
the entire family of possible experiments embraced in
Equations (3}, (4), and (7)-(10).

Since confidence intervals on differences between mo-
dalities and associated inferences based on them in our
analysis do not change when going to the new model, it
would be reasonzble to expect that inferences based on an
elaboration of the DBM analysis to the case of unequal -
variance structures across modalities would also remain
unchanged. We tave argued in reference 4 that our analy-
sis is @ distribution-free generalization of the approach of
DBM. Since inferences based on this gencralization re-
main unchanged when the variance structure is allowed to
change across modalities, inferences based on an elabora-
tion of DBM (ie, use of the jackknife rather than the
bootstrap) might also be expected to remain unchanged.
In the Appendix, we present an alternative to model B
that contains no expressions nonlinear in the variance
components and could thus be readily incorporated into
the method of DBM. We refer to this alternative as model
C. In the approach of the present article, inferences and
design of experirients based on model C are identical Lo
those based on model B, and they are thus identical to
those based on BWC (4) when estimation of differences
bewween modalitics is the object of the experiment.

Generality of the Present Work
An anonymous reviewer (December 2000) has sug-
gested that one could address the present problem by a
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natural extension of the DBM approach, using jackknifed
pseudo-values with the PROC MIXED routines in the
SAS software package (12). This will lead not only 10
estimates of the confidence intervals of interest but also to
maximum-likelihood (ML) or residual (often called re-
stricted) maximum-likelihood (REML) estimates of the
variance components. The approach of using REML to
obtain estimates of the variance components had also
been mentioned to one of us (R.F.W.) previously (D.D.
Dorfiman, oral communication, 1999). We agree that this
is indeed a reasonablc alternative to the present approach,
but it does not address the level of generality we seek
here. We summarize this issue as foilows.

The BWC approach (4), and its extension to the case
of unequal variance structures as provided above, is built
on the same general components-of-variance model used
by DBM. However, it replaces the jackknife and ANOVA
with a family of bootstrap rcsampling cxperiments and a
corresponding system of equations that lead to explicit
solutions for the variance components and confidence in-
tervals of interest, It is thus a distribution-free approach,
whereas classic ANOVA is based on the assumption of
normality for all the components. (REML also requires
assumptions for the relevant distributions.)

An additional feature of the present approach was cited
in reference 4. The bootstrap includes not ouly the leave-
one-out jackknife, but also more general leave-X-out
terms where X is greater than one, among the other kinds
of terms that sampling with replacement generates. For
the case where the statistic of interest is linear, all of the
terms that can contribute to the calculation of that statistic
on a single-bootstrap pass arc already included in the
jackknifed data sets; this is not true of nonlinear statistics,
that is, statistics that involve interactions between the data
points two or more at a time (10). The nonparametric
estimate of ROC area, for example, includcs sums of
rankings of data points two at a time (13,14) and thus
falls into the latter category. Thus, the leave-one-out jack-
knife does not in general capture all of the information in
the data regarding this statistic. Nevertheless, only small
differences were found in reference 4 between the DBM
and BWC methods for the variance structures and sam-
ples sizes studicd there. Also, in our (unpublished) Monte
Carlo simulations of bootstrap and jackknife estimates of
variance for the nonparametric measure of ROC area,
small differences between mean cstimates were seen, but
only when the number of patients per class was smaller
than 25. This issue bears further investigation, including
the case of parametric accuracy measures.
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Finally, we emphasize a general point about the philos-
ophy of the bootstrap made by Efron and Tibshirani (10).
The empirical distribution function is the nonparametric
ML estimate of the population distribution. In this sense,
the nonparametiic bootstrap provides “nonparametric ML
estimates” in the language of reference 10, or “distribu-
tion-free” ML estimates in language that we and others
prefer. The system of equations used here Lo propagate
those estimates back into cstimates of the variance com-
ponents will thus also lead to distribution-free ML esti-
mates. (This follows since the ML estimate of a function
of a parameter of interest is that function of the ML esti-
matc of the parameter.) For all of the above points, we
would argue that the approach of reference 4 and its
present extensions are the most general proposed so far
for the family of problems under consideration here.

The present approach to random-effects ROC analysis
extends our previous work (4) to the case where the vari-
ance structure may change across modalities, An example
comparing unaiced readers with readers assistcd by CAD
showed that both the reader and the reader-by-case com-
ponents of variance were greatly reduced after the addi-
tion of CAD, These results are consistent with previous
expectations regarding that study (15), but such results
had not been previously isolated quantitatively.

Several comraents regarding the future are in order.
The present model provides a quantitative framework for
interpreting the variability in MRMC studies in terms of a
model of the components of that variability. 1t may thus
offer the opportunity to contribute to the solution of sev-
eral outstanding problems in the field of medical image
science. The first of these is the connection hetween
physical performance measurements on diagnostic imag-
ing systesms, that is, measurements of “image quality,”
and measures of clinical outcome such as the ROC curve
(16,17). The variability observed at present in mammo-
graphic imaging (18), to take just one example, may mask
the gains to be expected from evolution of the physical
performance of mammographic imaging systems. The
present approach may make it possible to peel back this
mask with an efficient clinical experimental design.

The ability 1o isolate the contributions to varjability in
performance that arise from the reader from those that
arise from the patient and the imaging system opens up
new possibilities for imaging system optimization. The
professional community of radiologists may be better able
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to quantitatively measure and finc-tune their training of

readers, while the professional community of physicists

and engineers of imaging systems may be better able ©
fine-tune their system designs, cach with the appropriate
focus and emphasis.

Finally, the emergence of the field of computer-as-
sisted reading of images adds another layer of complexity
to the problem of assessing diagnostic imaging modali-
ties. The present wotk may contribute toward extending
our understanding and optimization of the interface be-
tween the imaging physics and human image readers 1o
the further intcrface of these with computerized reading-
assist modalities.

| APPENDIX.

The formulation described in the body of the present
article models the situation where the variance structure is
allowed o be unequal across modalities by splitting the
case, reader, and reader-by-case components in the gen-
eral linear model, that is, it makes them 2 function of mo-
dality; it leaves the modality-by-case, modality-by-reader,
and modality-by-reader-by-casc components unsplit. An
alternative to this model can be constructed by splitting
the latter three components and leaving the former three
components unsplit. We present the alternative modcl
equations here, together with a demonstration of a one-to-
one correspondence between the two alternative models.

In the alternative model, the modality-by-case, modal-
ity-by-reader, and modality-by-casc-by-reader terms are
functions of modality, i, and are written mcy(d), mryi),
and (mre)ydi), respectively. These components are taken
to be independent across modalities. The linear model of
Equation (1) then becomes

E‘Tb b lba Tty
Vil o

|

App=mtritat (ro)u + (mr)y(D)

+ (mo)uli) + (mre)yld) + zya(d).  (AD

The strengths of the components of variance of this
model will be distinguished from those of the models dis-
cussed in the body of the present article by the addition
of & presubscript C. Here, as earlier, we consider the case
of no replication and thus set c0%() = 0% (D) + o).
Equations (3), (4), and (7)(10) for the observablc vari-
ances in terms of the model components of variance for
the case of no replication then become

Var(Axcw) = o0+ o+ O M)

+ (0L M) + 0% + oo M), (A2)
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var(Agug) = 0% + cOh (M) + cO% + coXM),  (A3)
Vaf(ARC]M - ARC|M') = (ﬂ%:r(l) + CG'E,,,-(Z)
+ c0% (1) + c02.(2)
+ coi(l) +c0U2), (A9)
var{Acpy — Acrs) = 207 + 200%M), (A5)
varlAgrs — Acirrr) = cOme(1) + cOn(2)
+ oi(1) + c0X2), (A6
var(A gry — AC]R’M') = 2007 + cOh(1)
+ (05(2) + o) + c0:(2), (AD)

As with Equations (3), (4), and (7)—~(10), these equations
also reduce to the expressions in our previous work {4)
for the case whete the variances are equal across modali-
ties. Notice, howsver, that Equations (A2)—(A7) are now
linear in the model components. Thus, thcy may be
solved for these components by linear algebra in the same
manner as was used in our earlier work (4).

As noted earlicr, the left-hand sides of Equations
(A2)-(A7) are observables that are independent of any
model. Thus, we may equate the right-hand sides for the
present mode! with the corresponding right-hand sides of
Equations (3), (4), and (7)~(10) to discover the rclations
between the components of variance in the two models,
For example, equating the right-hand sides of Equation
(8) and Equation (A5) yields

EO'3¢|:M) + Ba% = ngc + C‘Ui(M)! (A8)

where, as above, the presubscript B refers to the model in
the body of the present article. Similarly, equating the
right-hand sides of Equation (4) and Equation (A3), and
subtracting Equation (A8) yields

M) + 507, = T2 + cOwlM), (49)
and equating the right-hand sides of Equation (3) and

Equation (A2) and subtracting the results in Equations
(A8) and (A9) yiclds

50 (M) + 502, = (07 + 0L, (M). (A10)

40117013

The completc parallclism of Equations (A8)-(A10) may
be more apparent on recalling that o in all models here
contains 0%,.. These three equations show that changing
from model B to model C changes the distribution of
variance strength within the three compartments defined
by these three equations, but it does not redistribute vari-
ance strength across these three compartments or equa-
tions. Continuing in this way, we may solve for the com-
ponents of model B in terms of those of model C and
vice versa, as we now show.

Equating the right-hand sides of Equations (10) and
(A7), equating the right-hand sides of Equations {4) and
(A3), and subtracting yields

cor = g0 (1}50(2). (Al1)

Finally, the equivalence of the right-hand sides of Equa-
tions (9) and (A6), and of Equations (7) and (A4), leads
in a gimilar way to

[4 o%c = Barc( 1)30‘,.‘.(2) (Al 2)

and

07 = 30{1)50/2). (A13)
Thus, from Equations (A8)~(A10) and Equations (A11}-
(A13), we have also

cO’E,,,(M) = Bo%(M) + BO%" - Bar(l)Bo.r(2)’
dnc(M) = Ba%(M) + Bazmc - Bo-c(l)ﬁac(z)v

codM) = 507 (M) + 507 — 50,{1)p0(2). (Al4)
Equations (A12)(A14) express the components of model
C in terms of the components of model B, The relation-
ships in the other direction may be obtaincd as follows.

The first equation of the set, Equation (A14), provides
two equations whose difference is

s0(1) = 5o3(2) = 0p1) — Onf2).  (A15)
The square of Equation (A13) may be uscd to rewrite the

second term of Equation (A15) in terms of the first (and
vice versa), providing a quadratic equation in go¥(1) (or
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Figure Al. ({a) Va:lance components ¢ {case), r (reader), and rc {reader-by-case) in the analyss of the study In reference 6, estimated
and mode! C of the Appendix

(vertical bars to the right in each palr).

Vertical bars represent mean estimates, + 1 standard deviation obtaned with the methods of reference 7. Note that these three compo-

nents remain unchanged in going from modei A to

and ¢ (residual error) In the analysis of the study in reference 6. Vertic
mated with the me:hod in reference 7. Unsplit components {to the left in each set of three)
Splitting components (the pair to the right in each set) are estimated with mode! C of the Ap-

{denoted model A in the present article).
pendix.

50%(2)). The solutjons are

402(1) = [(cod)? + (b12)7]2 + bl2,  (A16)

20X2) = [(c0D? + (b12)"]"* - bl2,
where

b= Calzhr(l) - Co%:r(z)

The form of Equation (A16) shows that there is only one
nonnegative solution. Parallel solutions of identical form
can be found in the same way for zo¥(3) and zo%(M).

Finally, expressions for the nonsplitting components in
model B may be obtained in terms of the components in
model C by combining Equation (A16) and its analogs
with Equations (A8)-(A10).

The present exercise demonstrates a one-10-one map-
ping between model C and model B. The selection be-
tween them thus appears to be a matter of intuitive appeal
or taste. An appzaling feature of model B is that the com-
ponents that are split correspond to populations (cases,
readers, readers-by-cases) that scem intuitively natural,
and thus model B is pedagogically attractive. On the
other hand, the splitting employed by model C may be
more intuitive for some, and an attractive feature of this
mode! is the fact that the equations to which it leads,
Equations (A2)-{A7), remain linear in a set of indepen-

614

model C. (b} Variance components m¢ {modality-by-case), mr (modality-by-reader),
al bars represent mean estimates, = 1 standard deviation esti-

are estimated with the mode! of reference 4

dent variance components. As a consequence, it is suit-
ablc for incorporation into conventional ANOVA (as in
DBM [2], for example). (The feature of linearity is not an
issue for the multiple-bootstrap approach; the choice of
model B versus model C leads to only small differences
in the computer coding that is required in that approach.)
Finally, model C requires no adjustment to accommodate
split-plot designs.

In the same manner as above, we may also show that
the interaction components in model A are related to
those in model C as simple arithmetic averages:

40%, = [0, (1) + 02(2))/2, (A1T)

and similarly for 02, and oZ. Now, it is Equation (Ad)
that determines the confidence intervals on the difference
of ROC accuracy measures across two fixed modalities
when readers and cases are taken as random effects. The
left-hand side of Bquation (A4) describes the underlying
population or bootstrap experiment. The right-hand side is
its decomposition according to model C and is propor-
tional to the sum of three averages, namely, the right-
hand side of Equation (A17) and the analogous terms for
the o2, and o2 components. The averaged components are
precisely the terms that contribute in model A, the equal-
variance model. Thus, as far as the confidence interval of
interest here is concerned, no new issues arise when mov-
ing from modet A to model C. (This is the same conclu-
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sion found in the body of the article when moving from
model A to model B.)

The example of the present article may be analyzed in
terms of modet C of this Appendix. The results are
shown in Figure Ala and Alb. The particular details of
these figures are different from those in Figure 1a and 1b
of the text, because the absolute levels of the quantities
that are split differ across the two models. However, be-
cause of the onc-to-one correspondence between the two
models, there is no fundamental difference between the
conclusions drawn from either set of figures.

_DEDICATION . i

The authors dedicate this work to the memory of
Dopald D. Dorfraan, PhD, of the University of Jowa, who
passed away on April 15, 2001. Don’s singular contribu-
tions to this field have always been an inspiration to the
present authors. The field will not be the same without
him.
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An optimal method for combining two correlated diagnostic assessments
with application to computer-aided diagnosis

Yulei Jiang and Charles E. Metz
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- - - - . ABSTRACT . . - e e e e

We are developing computer-aided diagnosis (CAD) methods that produce a quantitative diagnostic assessment, such as the
likelihood of malignancy of a breast lesion. Radiologists who use this computer aid must combine the computer's
quantitative assessment with their own. No theoretical or empirical methods are currently available to help radiologists
perform this task. Results of recent observer studies show that while CAD helps radiologists improve performance,
radiologists' ad hoc performance tends to be inferior to that of the computer alone, indicating that they are unable to use
computer aids optimally. We have developed a general method to combine two correlated diagnostic assessments. We
calculate a likelihood ratio based on a bivariate binormal model that describes the joint probability density of the latent
decision variables from two diagnostic assessments. To the extent that the bivariate binormal model is valid and that the
model's parameters can be estimated reliably, results that we obtain in this way will be optimal because that likelihood ratio is
used by the ideal observer in combining the diagnostic assessments. Preliminary results indicate that this method can produce
better performance than that achieved by radiologists when they use computer aids in an ad hoc way. This method can
potentially help radiologists use quantitative computed diagnostic assessments optimally, thereby surpassing the computer in

accuracy.

Keywords: computer-aided diagnosis (CAD), receiver operating characteristic (ROC) analysis, observer performance, ideal
observer approximation.

INTRODUCTION

Computer-aided diagnosis (CAD) involves either a binary or a quantitative form of computer aid. Computer-aided
detection usually involves a binary-form computer aid, such as an arrow that indicates the location of a potential lesion in a
mammogram. On the other hand, computer-aided diagnosis of malignant and benign lesions often involves a quantitative
computer aid!-4. For example, the computer aid may be an estimate of the likelihood of malignancy2. When a quantitative
computer aid is involved, the computer's quantitative assessment must be combined in some way with a radiologist's
diagnostic assessment. In published studies, radiologists are responsible for this task of combining two sources of diagnostic
assessments 14, Radiologists do so in an ad hoc way because there is no formal methods for radiologists to perform this task.
Results of the published studies show that radiologists are able to improve their diagnostic performance by using a computer
aid but sometimes cannot perform as well as the computer?: 3. This inability of radiologists to outperform the computer
indicates that they are not always able to combine a quantitative computer aid with their own diagnostic assessments

optimally.

Our purpose was to develop a generally "optimal” method for combining two sources of correlated diagnostic
assessments and to apply this method to CAD. If such a method can be developed, then radiologists may be able to improve
their performance in CAD more than that achievable from ad hoc use of the computer aid. Our method was based on the
calculation of a likelihood ratio that takes into account the individual accuracies of the two sources of diagnostic assessments
as well as their correlation. Because the ideal observer also uses this likelihood ratio, our method is theoretically optimal if
the model that was used to calculate the likelihood ratio is valid and if the model parameters can be estimated reliably.
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THORETICAL BACKGROUND

The bivariate binormal model and the likelihood ratio

The bivariate binormal model, illustrated schematically in Fig. 1, was developed by Metz ef al. for testing the
significance of differences between ROC curves measured from correlated data5 The marginal distributions of this bivariate
binormal model reduce to a pair of conventional univariate binormal models that represent the diagnostic accuracies of the
radiologist and of the computer. The shapes of the ellipsoids in the bivariate binormal model are determined by the
individual accuracies of the radiologist and the computer and by the correlation between their latent decision variables. This
model is appropriate for our present purpose because it takes into account the individual accuracies of the radiologist and the

computer and the correlation of their diagnostic assessments. )

Based on the bivariate binormal model, we define a likelihood ratio
Prob(x | cancer)

~ Prob(x | benign)

We will use this likelihood ratio (or equivalently, the logarithm of this likelihood ratio) as the combined diagnostic
assessment of the radiologist and the computer. Because the ideal observer also uses this likelihood ratio to combine the
diagnostic assessments of the radiologist and the computer, our method is theoretically optimal. However, in practice, its
results will depend on the validity of the bivariate binormal model in a particular situation and on whether the model
parameters can be estimated reliably. The log-likelihood ratio is a quadratic function of the latent decision variables used by
the radiologist and the computer because the bivariate binormal model mvolves a generally quadratic functlon of the same
latent decision variables>. Therefore, we call this method "quadratic averaging."

Quadratic averaging réquires a "training" process to estimate the bivariate-binormal model parameters. In general,
this requires a set of "training" cases comprised of the diagnostic assessments of a radiologist and a computer as well as the
diagnostic "truth" in all cases. Metz's CLABROC algorithm can be used to estimate the bivariate-binormal model parameters
from these training cases®. After the model parameters are determined, quadratic averaging can be applied to new cases.

Arithmetic averaging

Metz and Shen described a method of unweighted arithmetic averaging of diagnostic assessments®. They showed
that arithmetic averaging improves the resulting ROC curve by suppressing reader variations that are associated with the

Prob (x,y | cancer)

computer

' ;o radiologist

‘e

| " “Prob (x,y | benign)

LTRSS,

Figure 1. Schematic illustration of the bivariate binormal model
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diagnostic assessments. Swensson et al. described a similar method that uses the median for the same task’. These methods
are attractive because they do not require a "training" process for the estimation of any model parameters and because they
are straightforward to implement in practice. We compare the results of quadratic averaging and of arithmetic averaging.

MATERIALS AND METHODS

An observer-study dataset

We used data from a recent observer study?. The purpose of that study was to compare radiologists' performance in
differentiating malignant and benign clustered microcalcifications in mammograms with and without the aid of a computer-

estimated likelihood of malignancy. The observer study consisted of 104 cases of mammograms (46 contained cancers and.

58 contained benign lesions) and 10 radiologists who read all cases both without and with the computer aid. The study
design followed the muitiple-reader, muitiple-case (MRMC) paradigms. The details of the observer study are described

3
elsewhere~.

In the observer study, each radiologist provided his or her diagnostic confidence that a lesion was malignant for all
cases when reading the mammograms without the computer aid. In addition, each radiologist also provided his or her
diagnostic confidence when the computer-estimated likelihood of malignancy was available to the radiologist. Finally, the
computer provided an estimate of the likelihood of malignancy in all cases. Both radiologists' diagnostic confidence ratings
and the computer-estimated likelihood of malignancy were on a continuous scale of 0-100%.

Combining radiologists' unaided diagnostic assessments and the computer-estimated likelihood of malignancy

Arithmetic averaging and quadratic averaging were used to combine the radiologists' unaided diagnostic
assessments with the computer's estimate of the likelihood of malignancy. For arithmetic averaging, a radiologist's
diagnostic confidence rating (0-100%) and the computer-estimated likelihood of malignancy (0-100%) were simply averaged
arithmetically to produce a combined diagnostic score.

Quadratic averaging was done in two ways. First, the bivariate-binormal model parameters were estimated from all
available cases and were then used to produce a combined diagnostic score for the same cases. Because this method is

equivalent to a re-substitution plan9' 10, we refer to this implementation of quadratic averaging as Quad-RS. Second, the:

bivariate-binormal model parameters were estimated from all cases except one case and the resuiting model parameters were
used to produce a combined diagnostic score for the one lefi-out case. Therefore, for each case, the mode!l parameters were
re-estimated from a different set of cases. Because this method is equivalent to a leave-one-out re-sampling plan®: 10, we

refer to it as Quad-LOO.

Computer simulations

To confirm the results from actually pairing each of the 10 radiologists with the computer, we performed computer
simulations using the same bivariate-binormal model parameters as those from actually pairing the radiologists and the
computer. In the simulations, we generated a “training” dataset and a separate "test" dataset by random sampling from the
assumed bivariate binormal models. The "training" dataset was used to estimate the bivariate-binormal model parameters
required for quadratic averaging; these model parameters were then used to apply quadratic averaging on the "test" cases.
Arithmetic averaging was applied to the "test" cases only and the "training" dataset was not used for arithmetic averaging.
The numbers of cases in both the training and the test datasets were the same as in the observer study: 46 malignant and 58
benign cases. The simulations consisted of a total of 1,000 repetitions.
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RESULTS

Results obtained from the observer study

. We summarize the results of the observer study that are relevant to a comparison between the results of arithmetic
and quadratic averaging. A complete report of the observer study can be found elsewhere2. In this observer study, the 10
radiologists achieved an average A, value of 0.61 when they read the mammograms without the computer aid and an average
A, value of 0.75 when the computer-estimated likelihood of malignancy was available to them. The improvement in A, was
statistically significant (p < 0.0001; Dorfman-Berbaum-Metz method®). However, the performance of the computer alone
was higher than the performance of the radiologists either without or with the computer aid. The A, value of the computer
alone was 0.80 and the differences between this computer performance and the performance of the radiologists were
statistically significant (p < 0.0001 without and p = 0.002 with the computer aid; Student's t-test for paired data). Figure 2
shows (solid lines) the A, values of each radiologist's unaided and computer-aided performance as well as the performance of
the computer. (For comparison purpose, the computer's A, value is replicated over each radiologist's data and plotted as a

straight line.)

Results obtained from combining radiologists' unaided diagnostic assessments and the computer's estimate of the
likelihood of malignancy

Results of arithmetic averaging are shown in Fig. 2 (long-dash line). The average A, value obtained from arithmetic
averaging was 0.76. For 5 readers, the arithmetic-average A, values were higher than the A, values achieved by the
radiologists when they actually had the computer aid. For the other 5 readers, the opposite was true. For all radiologists
except one, the arithmetic-average A, values were lower than the A, value of the computer alone.

Results of quadratic averaging are also shown in Fig. 2. The Quad-RS resuits (dotted line}—when the parameters of
the bivariate binormal model were estimated from the same cases as those that produced the quadratic averaging results—

0.9 T I I i

Computer alone uad-RS
Et. ............ 2 N N T o /Q

0.8

~ - —t

Radiologists \

(computer-aided) AVE

Quad-LOO

0.6

Radiologists
(unaided)

]
2 4 6 8 10

e

0.5

Reader ID

Figure 2. Comparison of diagnostic performance of 10 radiologists and a computer obtained
in the observer study and three methods of combining the radiologists' unaided diagnostic
confidence ratings with the computer-estimated likelihood of malignancy.
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Figure 3. Simulation results.

show an average A, value of 0.82. For all 10 readers, the Quad-RS A, values were higher than the A, values achieved by the
radiologists when they actually had the computer aid. In addition, for all 10 readers, the Quad-RS A, values were higher than
the A, value of the computer alone. Finally, for all 10 readers, the Quad-RS A, values were higher than the arithmetic-

average A, values.

Results of Quad-LOO (short-dash line}—when parameters of the bivariate binormal model were estimated from
cases that are different from those that produced the quadratic averaging results—show an average A, value of 0.79. For all
10 readers, the Quad-LOO A, values were equal to or higher than the A, values achieved by the radiologists when they
actually employed the computer aid. In addition, for 5 radiologists, the Quad-LOO A, values were equal to or higher than the
A, values of the computer alone. Finally, for all radiologists except one, the Quad-LOO A, values were higher than the A,
values of arithmetic averaging. :

Simulation results

Simulation results are shown in Fig. 3. These results generally confirm the results of actually pairing each of the
radiologists with the computer. In the simulations, the average A, value of arithmetic averaging was 0.77. Except for one
radiologist, the arithmetic-average A, values were lower than the A, values of the computer alone. The average A, value of
quadratic averaging was 0.80. Except for one radiologist, the quadratic-average A, values were higher than the arithmetic-
average A; values. In addition, for 7 radiologists, the quadratic-average A, values were higher than the A, values of the

computer alone.

DISCUSSION

Quadratic averaging is a theoretically optimal method for combining two sources of correlated diagnostic
assessments. This method can be applied in CAD to combine quantitative diagnostic assessments of a radiologist and of a
computer. Although practical limitations apply, our study shows that quadratic averaging can consistently produce results
that are better than those achieved by radiologists who use a quantitative computer aid in an ad hoc way. In addition,
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quadratic averaging can consistently produce results that are better than those of arithmetic averaging, at least in situations
where the individual accuracies of the diagnostic assessments to be combined differ substantially and/or the two conditional
distributions of the bivariate binormal model differ substantially. Moreover, quadratic averaging results are comparable to, if
not better than, the performance of the computer alone.

The results of quadratic averaging depend on the number of "training" cases available for the estimation of the
bivariate-binormal model parameters and may also depend on the true values of the model parameters. In this study, the
number of training cases was on the order of 100. This may be considered as typical in observer studies. Therefore, our
results are encouraging because they indicate that the quadratic-averaging method could be practical. However, the
parameter values of the bivariate binormal models used in this study were not broad enough for an assessment of the broad
effects of quadratic averaging and further studies are needed.

CONCLUSION

Quadratic averaging based on the bivariate binormal model is a theoretically optimal method for combining
correlated diagnostic assessments from two sources if the bivariate binormal model is valid and if the model parameters can
be estimated reliably. Quadratic averaging may be an effective method for combining radiologists’ quantitative diagnostic
assessments and a computer's quantitative diagnostic aid to improve on radiologists' ad hoc use of the computer aid.
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INTRODUCTION

Mammographyv is currently the most effect method for breast cancer detection.
However, mammography faces challenges to improve its performance in the
diagnosis of malignant from benign breast lesions and to reduce the number of
biopsy procedures performed on benign lesions. We have previously developed
a computer technique to classify clustered microcalcifications in mammograms
as malignant or benign. We have shown that this technique can be more accu-
rate than radiologists in differentiating malignant from benign breast lesions
(Jiang et al. 1996b). More importantly, we have shown that this technique can
be an effective diagnostic aid for radiologists that can lead to improvements in
diagnostic performance and biopsy recommendations (Jiang et al. 1999). This
computer technique, however, was developed on digitized screen-film mam-
mograms and it has not been extended to full-field digital mammograms (FFDMs).
In this study, we apply this computer technique to analyze small-field digital
mammograms obtained from a LORAD stereotactic biopsy machine. Our pur-
pose was to evaluate the computer performance in classifying malignant and
benign clustered microcalcifications in digital mammograms (Pisano et al. 2000,
Nawano et al. 1999).

MATERIALS AND METHODS

LORAD Digital Mammograms

We analvzed mammograms of consecutive biopsies performed in 1997 on a
LORAD digital stereotactic biopsy machine at Northwestern University. Of this
series, we have obtained biopsy results in 242 cases, of which 61 cases were
malignant and 181 cases were benign. These images were obtained during
either stereotactic biopsies or needle localization procedures for surgical biop-
sies. The LORAD machine produces images with two different pixel sizes and
almost all images we obtained were 512 x 512 in size. The pixel size of the 512
images was 0.116 mm at the phosphor surface. A few images were 1024 x 1024
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in size, and the pixel size of 1k images was 0.058 mm at the phosphor surface.
Because of the difference in pixel size, 1k images were not analyzed in this study
and one case was eliminated for this reason. For cases of stereotactic biopsy, we
analyzed images that were labeled as “scout” and “stereo” views. Other images
labeled as “pre-fire,” “post-fire,” and “post-exam” were not analyzed either because
of presence of biopsy instruments or because of absence of microcalcifications
post biopsy, but these images were used to help determine the exact biopsy
location. Cases that consisted of only scout and stereo views were not analyzed
because the exact biopsy location could not be determined reliably. For needle-
localization cases, although images were not assigned with different labels as in
cases of stereotactic biopsy, we analyzed only those images that would have
been labeled as scout views (i.e., without overlying biopsy instruments).
Occasionally, a verification image after insertion of a needle or a surgical wire
was also analyzed if that particular image depicted the microcalcifications
more clearly than the corresponding scout image and if the biopsy instrument
did not in any wayv obscure the microcalcifications. Wires in these images did
not affect our computer analysis as long as the wire did not overlap with any
microcalcifications because the computer analysis was based entirely on indi-
vidual microcalcifications.

Computer Ciassification Technique

We applied the computer technique developed on digitized screen-film mam-
mograms without modification to small-field digital mammograms, except that
a linear characteristic curve was used instead of a conventional non-linear
Hurter and Driffield (H&D) curve for a screen-film system. This computer tech-
nique consisted of an automated feature-extraction stage and a classification
stage using an artificial neural network (ANN). For feature extraction, locations
of individual microcalcifications were manually identified on a high-quality
monitor (Imlogix, St. Louis, MO). Images containing biopsy instruments (needle
or wire) were used as reference to determine the exact biopsy location. Eight
features were extracted from mammograms: (1) area of a cluster, (2) circularity
of a cluster, (3) number of microcalcifications in a cluster, (4) average effective
volume of microcalcifications (defined as area times contrast with contrast being
converted to units of mm), (5) relative standard deviation in effective volume,
(6) relative standard deviation in effective thickness (contrast), (7) average area
of microcalcifications, and (8) a shape-irregularity measure that was used to

.identify linear- or irregular-shape microcalcifications. The calculation of contrast

required description of the relationship between, for screen-film mammo-
grams, exposure and film density-(i.e., H&D curve) and, for digital images, the
relationship between exposure and pixel value. In this study, we assumed a
linear relationship for the digital images with a slope of 30-pixel value incre-
ment for every 1 mR change in exposure (Roehrig et al. 1993, 1994).

In the classification stage, the computer technique used a conventional feed-
forward error-back-propagation ANN to analyze the features and to compute an
estimate of the likelihood of malignancy (Jiang et al. 1996b, 1999). As in our
previous studies, the leave-one-out method was used to train and evaluate the
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ANN (Lachenbruch and Mickey 1968, Fukunaga 1990). The ANN analyzed
each image separately; performance of computer classification can therefore be
evaluated on a per-image basis. However, to simulate clinical decision-making,
computer classification was also evaluated on a per-patient basis by combining
classification results from all images from one case into a final assessment. In
the per-patient analysis, the final assessment was equal to the highest likelihood-
of-malignancy estimate obtained from all images in one case.

Radiologists’ Prospective Diagnostic Assessment

All cases in this series included a diagnostic assessment made prospectively by
aradiologist at the time of biopsy. These diagnostic assessments were similar to
the Breast Imaging Reporting and Data System (BI-RADS) assessment categories:
There were five categories (from 1 to 5), with 1 indicating “most likely benign”
and 5 indicating “most likely malignant.” However, these diagnostic assessments
were clearly different from the BI-RADS categories because, according to BI-
RADS. category 1 (normal) and category 2 (benign) lesions are not te be
recommended for biopsy and therefore would not have been assigned to cases
in this consecutive biopsy series. Nevertheless, these diagnostic assessments
made by radiologists were invaluable for this study as they allowed us to obtain
an ROC curve to quantify radiologists’ diagnostic performance and to compare
their diagnostic performance with that of computer classification.

Analysis of Classification Performance

We used ROC analysis to evaluate classification performance (Metz 1989). A
ROC curve was obtained for radiologists from their diagnostic assessments.
Two ROC curves were obtained for computer classification in a per-image and
a per-patient analysis. Area under the ROC curve (A,) and a partial area index,
0.90A’, were used as performance indices (Jiang et al. 1996a). Statistical com-
parisons were made between two ROC curves of radiologists and of computer
classification in the per-patient analysis.

RESULTS

We have analyzed 113 cases thus far. Of these, 34 cases were eliminated for rea-
sons of (1) mass at the biopsy site, (2) images containing only specimen
radiographs, (3) all images being 1k in size (different pixel size), or (4) no image
showing a needle or a surgical wire (unable to determine the exact biopsy loca-
tion). Of the remaining 79 cases (176 images), 33 lesions {56 images) were
malignant and 46 lesions (120 images) were benign.

The ROC curve obtained from radiologists’ prospective diagnostic assess-
ments made at the time of biopsy is shown in figure 1. This radiologists’ ROC
curve has an A, of 0.76 +0.06 and an 0.90A] value of 0.21 £0.11.

Two ROC curves obtained from computer classification in a per-image and a
per-patient analysis are also shown in figure 1. In the per-image analysis, in
which each mammogram was analyzed as a separate case, computer classifica-
tion achieved an A, of 0.84 + 0.03 and an 0.90A4; value of 0.25 £ 0.10. In the
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Figure I. ROC curves comparing radiologists’ diagnostic assessment with results of
computer classification in a per-image and a per-patient analysis.

per-patient analysis, in which results of all images from one patient were combined
into a final assessment by retaining only the highest estimate of likelihood of
malignancy, computer classification achieved an A, 0f0.90 £0.04 and a 0.904/,
value of 0.44 £ 0.16.

Comparison of two ROC curves between radiologists’ performance and com-
puter classification in the per-patient analysis showed that differences in A, were
statistically significant (p = 0.02) but differences in 0.90A; were not (p = 0.16).

DISCUSSION

The computer performance in classifying malignant and benign clustered
microcalcifications obtained from small-field digital mammograms is similar to
performance that we have obtained previously from digitized screen-film
mammograms. In a previous study of 53 cases of digitized screen-film mammo-
grams, computer classification achieved an A, of 0.92 (Jiang et al. 1996b). In
another study of 104 cases of digitized screen-film mammograms, computer clas-
sification achieved an A, of 0.80 (Jiang et al. 1999). Both studies were designed
similar to the present study, and both studies employed the leave-one-out
training and evaluation method. In both those studies, the computer perfor-
mance was found to be significantly better than that of radiologists. These
findings indicate that computer performance on small-field digital mammo-
grams is similar to that on digitized screen-film mammograms. However, the
results on LORAD digital mammograms are preliminary and need to be
updated as we analyze more cases.




COMPUTER CLASSIFICATION 24|

We applied the computer technique developed on digitized screen-film
mammograms to small-field digital mammograms without modification, except
that a linear characteristic curve was used to replace the non-linear H&D curve
for screen-film mammograms. In addition to the characteristic curve, our com-
puter technique also uses modulation transfer function (MTF) data (of 3
screen-film system and a film digitizer) in its calculation of microcalcifications’
contrast. Previously, we used MTF data of a Fuji drum scanner (0.1-mm pixel
size) and MTF data of a mammography screen-film system (the effect on con-

did not update the MTF data for the LORAD machine because the pixel size of
the LORAD machine was comparable to the pixel size of the film digitizer we
used previously. However, we will incorporate the correct MTF data (Roehrig
et al. 1994) in future studies.

We conclude from this study that our computer technique for classifying
clustered microcalcifications as malignant or benign that was developed on
digitized screen-film mammograms can be used to analyze small-field digital
mammograms. In future studies, we will evaluate this computer classification

technique on FFDMs.
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INTRODUCTION

Mammography is currently the most effect method for breast cancer detection.
However, mammography faces challenges to improve its performance in the
diagnosis of malignant from benign breast lesions and to reduce the number of
biopsy procedures performed on benign lesions. We have previously developed
a computer technique to classify clustered microcalcifications in mammograms
as malignant or benign. We have shown that this technique can be more accu-
rate than radiologists in differentiating malignant from benign breast lesions
(Jiang et al. 1996b). More importantly, we have shown that this technique can
be an effective diagnostic aid for radiologists that can lead to improvements in
diagnostic performance and biopsy recommendations (Jiang et al. 1999). This
computer technique, however, was developed on digitized screen-film mam-
mograms and it has not been extended to full-field digital mammograms (FFDMs).
In this study. we apply this computer technique to analyze small-field digital
mammograms obtained from a LORAD stereotactic biopsy machine. Our pur-
pose was to evaluate the computer performance in classifving malignant and
benign clustered microcalcifications in digital mammograms (Pisano et al. 2000,
Nawano et al. 1999).

MATERIALS AND METHODS

LORAD Digital Mammograms

We analyzed mammograms of consecutive biopsies performed in 1997 on a
LORAD digital stereotactic biopsy machine at Northwestern University. Of this
series, we have obtained biopsy results in 242 cases, of which 61 cases were
malignant and 181 cases were benign. These images were obtained during
either stereotactic biopsies or needle localization procedures for surgical biop-
sies. The LORAD machine produces images with two different pixel sizes and
almost all images we obtained were 512 x 512 in size. The pixel size of the 512
images was 0.116 mm at the phosphor surface. A few images were 1024 x 1024
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in size, and the pixel size of 1k images was 0.058 mm at the phosphor surface.
Because of the difference in pixel size, 1k images were not analyzed in this study
and one case was eliminated for this reason. For cases of stereotactic biopsy, we
analyzed images that were labeled as “scout” and “stereo” views. Other images
labeled as “pre-fire,” “post-fire,” and “post-exam” were not analyzed either because
of presence of biopsy instruments or because of absence of microcalcifications
post biopsy, but these images were used to help determine the exact biopsy
location. Cases that consisted of only scout and stereo views were not analyzed
because the exact biopsy location could not be determined reliably. For needle-
localization cases, although images were not assigned with different labels as in
cases of stereotactic biopsy, we analyzed only those images that would have
been labeled as scout views (i.e., without overlying biopsy instruments).
Occasionally, a verification image after insertion of a needle or a surgical wire
was also analyzed if that particular image depicted the microcalcifications
more clearly than the corresponding scout image and if the biopsy instrument
did not in any way obscure the microcalcifications. Wires in these images did
not affect our computer analysis as long as the wire did not overlap with any
microcalcifications because the computer analysis was based entirely on indi-
vidual microcalcifications.

Computer Classification Technique

We applied the computer technique developed on digitized screen-film mam-
mograms without modification to small-field digital mammograms, except that
a linear characteristic curve was used instead of a conventional non-linear
Hurter and Driffield (H&D) curve for a screen-film system. This computer tech-
nique consisted of an automated feature-extraction stage and a classification
stage using an artificial neural network (ANN). For feature extraction, locations
of individual microcalcifications were manually identified on a high-quality
monitor (Imlogix, St. Louis, MO). Images containing biopsy instruments (needle
or wire) were used as reference to determine the exact biopsy location. Eight
features were extracted from mammograms: (1) area of a cluster, (2) circularity
of a cluster, (3) number of microcalcifications in a cluster, (4) average effective
volume of microcalcifications (defined as area times contrast with contrast being
converted to units of mm), (5) relative standard deviation in effective volume,
(6) relative standard deviation in effective thickness (contrast), (7) average area
of microcalcifications, and (8) a shape-irregularity measure that was used to

.identify linear- or irregular-shape microcalcifications. The calculation of contrast

required description of the relationship between, for screen-film mammo-
grams, exposure and film density (i.e., H&D curve) and, for digital images, the
relationship between exposure and pixel value. In this study, we assumed a
linear relationship for the digital images with a slope of 30-pixel value incre-
ment for every 1 mR change in exposure (Roehrig et al. 1993, 1994).

In the classification stage, the computer technique used a conventional feed-
forward error-back-propagation ANN to analyze the features and to compute an
estimate of the likelihood of malignancy (Jiang et al. 1996b, 1999). As in our
previous studies, the leave-one-out method was used to train and evaluate the
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ANN (Lachenbruch and Mickey 1968, Fukunaga 1990). The ANN analyzed
each image separately; performance of computer classification can therefore be
evaluated on a per-image basis. However, to simulate clinical decision-making,
computer classification was also evaluated on a per-patient basis by combining
classification results from all images from one case into a final assessment. In
the per-patient analysis, the final assessment was equal to the highest likelihood-
of-malignancy estimate obtained from all images in one case.

Radiologists’ Prospective Diagnostic Assessment

All cases in this series included a diagnostic assessment made prospectively by
aradiologist at the time of biopsy. These diagnostic assessments were similar to
the Breast Imaging Reporting and Data System (BI-RADS) assessment categories:
There were five categories (from 1 to 5), with 1 indicating “most likely benign”
and 5 indicating “most likely malignant.” However, these diagnostic assessments
were clearly different from the BI-RADS categories because, according to BI-
RADS, category 1 (normal) and category 2 (benign) lesions are not to be
recommended for biopsy and therefore would not have been assigned to cases
in this consecutive biopsy series. Nevertheless, these diagnostic assessments
made by radiologists were invaluable for this study as they allowed us to obtain
an ROC curve to quantify radiologists’ diagnostic performance and to compare
their diagnostic performance with that of computer classification.

Analysis of Classification Performance

We used ROC analysis to evaluate classification performance (Metz 1989). A
ROC curve was obtained for radiologists from their diagnostic assessments.
Two ROC curves were obtained for computer classification in a per-image and
a per-patient analysis. Area under the ROC curve (A,) and a partial area index,
0.9047, were used as performance indices (Jiang et al. 1996a). Statistical com-
parisons were made between two ROC curves of radiologists and of computer
classification in the per-patient analysis.

RESULTS

We have analyzed 113 cases thus far. Of these, 34 cases were eliminated for rea-
sons of (1) mass at the biopsy site, (2) images containing only specimen
radiographs, (3) all images being 1k in size (different pixel size), or (4) no image
showing a needle or a surgical wire (unable to determine the exact biopsy loca-
tion). Of the remaining 79 cases (176 images), 33 lesions (56 images) were
malignant and 46 lesions (120 images) were benign.

The ROC curve obtained from radiologists’ prospective diagnostic assess-
ments made at the time of biopsy is shown in figure 1. This radiologists’ ROC
curve has an A, of 0.76 + 0.06 and an 0.90A; value of 0.21 £ 0.11.

Two ROC curves obtained from computer classification in a per-image and a
per-patient analysis are also shown in figure 1. In the per-image analysis, in
which each mammogram was analyzed as a separate case, computer classifica-
tion achieved an A, of 0.84 £ 0.03 and an 0.904, value of 0.25 + 0.10. In the
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Figure |I. ROC curves comparing radiologists’ diagnostic assessment with results of
computer classification in a per-image and a per-patient analysis.

| per-patient analysis, in which results of all images from one patient were combined
| into a final assessment by retaining only the highest estimate of likelihood of
malignancy, computer classification achieved an A, of 0.90 £ 0.04 and a 0.90A’
value of 0.44 £0.16.
Comparison of two ROC curves between radiologists’ performance and com-
puter classification in the per-patient analysis showed that differences in A, were
statistically significant (p = 0.02) but differences in 0.90A, were not (p = 0.16).

DISCUSSION

The computer performance in classifying malignant and benign clustered

microcalcifications obtained from small-field digital mammograms is similar to
| performance that we have obtained previously from digitized screen-film
| mammograms. In a previous study of 53 cases of digitized screen-film mammo-
grams, computer classification achieved an A, of 0.92 (Jiang et al. 1996b). In
another study of 104 cases of digitized screen-film mammograms, computer clas-
sification achieved an A, of 0.80 (Jiang et al. 1999). Both studies were designed
similar to the present study, and both studies employed the leave-one-out
training and evaluation method. In both those studies, the computer perfor-
mance was found to be significantly better than that of radiologists. These
findings indicate that computer performance on small-field digital mammo-
grams is similar to that on digitized screen-film mammograms. However, the
results on LORAD digital mammograms are preliminary and need to be

updated as we analyze more cases.
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We applied the computer technique developed on digitized screen-film
mammograms to small-field digital mammograms without modification, except
that a linear characteristic curve was used to replace the non-linear H&D curve
for screen-film mammograms. In addition to the characteristic curve, our com-
puter technique also uses modulation transfer function (MTF) data (of a
screen-film system and a film digitizer) in its calculation of microcalcifications’
contrast. Previously, we used MTF data of a Fuji drum scanner (0.1-mm pixel
size) and MTF data of a mammography screen-film system (the effect on con-
trast calculation was dominated by the film-digitizer MTF). In this study, we
did not update the MTF data for the LORAD machine because the pixel size of
the LORAD machine was comparable to the pixel size of the film digitizer we
used previously. However, we will incorporate the correct MTF data (Roehrig
et al. 1994) in future studies.

We conclude from this study that our computer technique for classifying
clustered microcalcifications as malignant or benign that was developed on
digitized screen-film mammograms can be used to analyze small-field digital
mammograms. In future studies, we will evaluate this computer classification

technique on FFDMs.
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